Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(10)2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37896854

RESUMO

Ebola virus disease (EVD) represents a global health threat. The etiological agents of EVD are six species of Orthoebolaviruses, with Orthoebolavirus zairense (EBOV) having the greatest public health and medical significance. EVD pathogenesis occurs as a result of broad cellular tropism of the virus, robust viral replication and a potent and dysregulated production of cytokines. In vivo, tissue macrophages are some of the earliest cells infected and contribute significantly to virus load and cytokine production. While EBOV is known to infect macrophages and to generate high titer virus in the liver, EBOV infection of liver macrophages, Kupffer cells, has not previously been examined in tissue culture or experimentally manipulated in vivo. Here, we employed primary murine Kupffer cells (KC) and an immortalized murine Kupffer cell line (ImKC) to assess EBOV-eGFP replication in liver macrophages. KCs and ImKCs were highly permissive for EBOV infection and IFN-γ polarization of these cells suppressed their permissiveness to infection. The kinetics of IFN-γ-elicited antiviral responses were examined using a biologically contained model of EBOV infection termed EBOV ΔVP30. The antiviral activity of IFN-γ was transient, but a modest ~3-fold reduction of infection persisted for as long as 6 days post-treatment. To assess the interferon-stimulated gene products (ISGs) responsible for protection, the efficacy of secreted ISGs induced by IFN-γ was evaluated and secreted ISGs failed to block EBOV ΔVP30. Our studies define new cellular tools for the study of EBOV infection that can potentially aid the development of new antiviral therapies. Furthermore, our data underscore the importance of macrophages in EVD pathogenesis and those IFN-γ-elicited ISGs that help to control EBOV infection.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Camundongos , Interferon gama/farmacologia , Células de Kupffer , Ebolavirus/genética , Interferons/farmacologia , Antivirais/farmacologia
2.
PLoS Pathog ; 17(11): e1009743, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34797899

RESUMO

Phosphatidylserine (PS) receptors enhance infection of many enveloped viruses through virion-associated PS binding that is termed apoptotic mimicry. Here we show that this broadly shared uptake mechanism is utilized by SARS-CoV-2 in cells that express low surface levels of ACE2. Expression of members of the TIM (TIM-1 and TIM-4) and TAM (AXL) families of PS receptors enhance SARS-CoV-2 binding to cells, facilitate internalization of fluorescently-labeled virions and increase ACE2-dependent infection of SARS-CoV-2; however, PS receptors alone did not mediate infection. We were unable to detect direct interactions of the PS receptor AXL with purified SARS-CoV-2 spike, contrary to a previous report. Instead, our studies indicate that the PS receptors interact with PS on the surface of SARS-CoV-2 virions. In support of this, we demonstrate that: 1) significant quantities of PS are located on the outer leaflet of SARS-CoV-2 virions, 2) PS liposomes, but not phosphatidylcholine liposomes, reduced entry of VSV/Spike pseudovirions and 3) an established mutant of TIM-1 which does not bind to PS is unable to facilitate entry of SARS-CoV-2. As AXL is an abundant PS receptor on a number of airway lines, we evaluated small molecule inhibitors of AXL signaling such as bemcentinib for their ability to inhibit SARS-CoV-2 infection. Bemcentinib robustly inhibited virus infection of Vero E6 cells as well as multiple human lung cell lines that expressed AXL. This inhibition correlated well with inhibitors that block endosomal acidification and cathepsin activity, consistent with AXL-mediated uptake of SARS-CoV-2 into the endosomal compartment. We extended our observations to the related betacoronavirus mouse hepatitis virus (MHV), showing that inhibition or ablation of AXL reduces MHV infection of murine cells. In total, our findings provide evidence that PS receptors facilitate infection of the pandemic coronavirus SARS-CoV-2 and suggest that inhibition of the PS receptor AXL has therapeutic potential against SARS-CoV-2.


Assuntos
COVID-19/etiologia , Receptores de Superfície Celular/fisiologia , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/fisiologia , Animais , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Receptores de Superfície Celular/antagonistas & inibidores , Internalização do Vírus , Receptor Tirosina Quinase Axl , Tratamento Farmacológico da COVID-19
3.
bioRxiv ; 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34159331

RESUMO

Phosphatidylserine (PS) receptors are PS binding proteins that mediate uptake of apoptotic bodies. Many enveloped viruses utilize this PS/PS receptor mechanism to adhere to and internalize into the endosomal compartment of cells and this is termed apoptotic mimicry. For viruses that have a mechanism(s) of endosomal escape, apoptotic mimicry is a productive route of virus entry. We evaluated if PS receptors serve as cell surface receptors for SARS-CoV-2 and found that the PS receptors, AXL, TIM-1 and TIM-4, facilitated virus infection when low concentrations of the SARS-CoV-2 cognate receptor, ACE2, was present. Consistent with the established mechanism of PS receptor utilization by other viruses, PS liposomes competed with SARS-CoV-2 for binding and entry. We demonstrated that this PS receptor enhances SARS-CoV-2 binding to and infection of an array of human lung cell lines and is an under-appreciated but potentially important host factor facilitating SARS-CoV-2 entry.

4.
Curr Opin Virol ; 43: 41-49, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32896675

RESUMO

Endothelial dysfunction leading to vascular permeability and plasma leakage are characteristic features of severe dengue and sepsis. However, the mechanisms underlying these immune-pathologies remain unclear. The risk of severe dengue and sepsis development depend on patient-related and pathogen-related factors. Additionally, comorbidities increase the risk of severe disease and their incidence hampers correct diagnosis and treatments. To date, there is no efficient therapy to combat severe dengue and sepsis. Here, we discuss the differences and similarities between the pathogenesis of severe dengue and that of bacterial sepsis. We identify gaps in knowledge that need to be better understood in order to move towards the rational development and/or usage of therapeutic strategies to ameliorate severe dengue disease.


Assuntos
Vírus da Dengue/fisiologia , Sepse/imunologia , Sepse/patologia , Dengue Grave/imunologia , Dengue Grave/patologia , Animais , Permeabilidade Capilar , Vírus da Dengue/genética , Humanos , Sepse/fisiopatologia , Sepse/virologia , Dengue Grave/fisiopatologia , Dengue Grave/virologia
5.
Nat Commun ; 11(1): 3177, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576819

RESUMO

Vascular permeability and plasma leakage are immune-pathologies of severe dengue virus (DENV) infection, but the mechanisms underlying the exacerbated inflammation during DENV pathogenesis are unclear. Here, we demonstrate that TLR2, together with its co-receptors CD14 and TLR6, is an innate sensor of DENV particles inducing inflammatory cytokine expression and impairing vascular integrity in vitro. Blocking TLR2 prior to DENV infection in vitro abrogates NF-κB activation while CD14 and TLR6 block has a moderate effect. Moreover, TLR2 block prior to DENV infection of peripheral blood mononuclear cells prevents activation of human vascular endothelium, suggesting a potential role of the TLR2-responses in vascular integrity. TLR2 expression on CD14 + + classical monocytes isolated in an acute phase from DENV-infected pediatric patients correlates with severe disease development. Altogether, these data identify a role for TLR2 in DENV infection and provide insights into the complex interaction between the virus and innate receptors that may underlie disease pathogenesis.


Assuntos
Vírus da Dengue/metabolismo , Dengue/imunologia , Monócitos/metabolismo , Receptor 2 Toll-Like/metabolismo , Permeabilidade Capilar , Quimiocinas/metabolismo , Criança , Pré-Escolar , Citocinas/metabolismo , Dengue/virologia , Endotélio Vascular/metabolismo , Feminino , Proteínas Ligadas por GPI/metabolismo , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Inflamação , Leucócitos Mononucleares/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Masculino , NF-kappa B/metabolismo , Receptores de IgG/metabolismo , Índice de Gravidade de Doença , Receptor 6 Toll-Like
6.
PLoS Negl Trop Dis ; 11(6): e0005712, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28644900

RESUMO

Dengue and chikungunya are viral diseases transmitted to humans by infected Aedes spp. mosquitoes. With an estimated 390 million infected people per year dengue virus (DENV) currently causes the most prevalent arboviral disease. During the last decade chikungunya virus (CHIKV) has caused large outbreaks and has expanded its territory causing millions of cases in Asia, Africa and America. The viruses share a common mosquito vector and during the acute phase cause similar flu-like symptoms that can proceed to more severe or debilitating symptoms. The growing overlap in the geographical distribution of these mosquito-borne infections has led to an upsurge in reported cases of DENV/CHIKV co-infections. Unfortunately, at present we have little understanding of consequences of the co-infections to the human host. The overall aim of this study was to define viral replication dynamics and the innate immune signature involved in concurrent DENV and CHIKV infections in human peripheral blood mononuclear cells (PBMCs). We demonstrate that concomitant infection resulted in a significant reduction of CHIKV progeny and moderate enhancement of DENV production. Remarkably, the inhibitory effect of DENV on CHIKV infection occurred independently of DENV replication. Furthermore, changes in type I IFN, IL-6, IL-8, TNF-α, MCP-1 and IP-10 production were observed during concomitant infections. Notably, co-infections led to a significant increase in the levels of TNF-α and IL-6, cytokines that are widely considered to play a crucial role in the early pathogenesis of both viral diseases. In conclusion, our study reveals the interplay of DENV/CHIKV during concomitant infection and provides a framework to investigate viral interaction during co-infections.


Assuntos
Vírus Chikungunya/imunologia , Coinfecção/imunologia , Vírus da Dengue/imunologia , Imunidade Inata , Leucócitos Mononucleares/imunologia , Interferência Viral , Replicação Viral , Animais , Células Cultivadas , Vírus Chikungunya/fisiologia , Citocinas/metabolismo , Vírus da Dengue/fisiologia , Humanos , Leucócitos Mononucleares/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...